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Executive Summary

Email scams are still a part of modern life and falling victim to a scam is at least dis-
heartening and at most deadly. In response to this reality, scam-baiters are a community
of people who have formed to combat this blight by purposefully engaging scammers to
waste the scammer’s time, reducing their effectiveness at scamming legitimate victims.

My project will use data sourced from the scam-baiting community to train a series
of machine learning models for two purposes:

1. To distinguish between a scammer and a scam-baiter in scam-baiting conversations.

2. To distinguish between a conversation occurring between a scammer and scam-baiter
and a regular non-scam email conversation

Furthermore, my project will analyze how the use of language in scam conversations
changes over time. These tools and analysis will add to the tools available to the cyber
security industry for identifying scam email conversations so that email filtering may be
more effective and email providers better able to intervene ongoing scam solicitations.

My contributions and achievements are as follows:

• I spent 10 hours researching the various scam-baiter communities and their docu-
mented interactions.

• I wrote 1500 lines of code, performing the tasks of: data collection and cleaning;
feature extraction for machine learning models; training and testing models; using
said models to analyze how language changes over time in scam conversations.

• I trained models for distinguishing between scam and non-scam conversations.

• I trained models for distinguishing between scammers and non-scammers.

• I trained an LDA model for topic clustering, using said topics to plot language use
over time in scam conversations.

This project did not require ethical review, as determined by my supervisor Dr.
Matthew Edwards.
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Supporting Technologies

I used the Python programming language and many of its supported modules and classes
to achieve my goals, in particular:

• Python 3.7 was my programming language of choice, and all my code is implemented
in this language.

• The Python modules SKlearn and Gensim were used for training and testing my
machine learning models.

• The Natural Language Toolkit (NLTK) Python module was used for tokenization
and stemming.

• The Matplotlib Python module was used for graphing my results and tests

• The Numpy and Pandas Python modules were used for data storage and handling
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Notation and Acronyms
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Chapter 1

Contextual Background

1.1 Email Spam and Scams

Email spam, also know as junk mail is defined as:

“Unsolicited, unwanted email that was sent indiscriminately, directly or indi-
rectly, by a sender having no current relationship with the recipient.” [10]

Email spam makes up more and more of email traffic as the technology required to produce
the spam increases in availability and simplicity [18]. In fact, some estimates put the
percentage of emails that are spam at 73% [16].

Not all spam emails are malicious (ie intend to do harm to the receiver). A non-
malicious spam email may be an unwanted email from your local supermarket advertising
their newest deals. Malicious spam however is a considerable proportion of received spam
and various methods exist for a malicious individual to harm the emails recipient. Most of
these methods are included under the umbrella of ‘phishing’ scams [6], where a malicious
individual will attempt to gain valuable information about the emails recipient through
trickery or coercion. Valuable information could be an individual’s social network login
information, credit card numbers, banking details etc.

The scam of interest to this project is the Nigerian Prince Scam (also referred to as
the 419 scam, a reference to the criminal code for this type of scam in Nigeria, where the
modern version of the scam is said to originate [20]). The scam has existed in one form
or another however for a vast amount of time, with one early documented example dating
to the late 18th century [3]. The basic principles of the scam are as follows:

The scam target will receive an email from an individual pretending to be a figure of
prominence or vast wealth. This figure will usually claim to be from an area of enough
mystery or anonymity to the target that the events laid out next might appear plausible.
The figure might claim that they are in some form of legal trouble, for example, they
may have a large fortune stashed away and want to move it out of the country but can’t
due to incompetent / corrupt officials. For the relatively low cost of a bribe or a legal
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CHAPTER 1. CONTEXTUAL BACKGROUND

processing fee the scammer promises to provide the target with a significant share of the
newly liberated wealth. Once the scammer has managed to receive payment for whatever
proposed purpose, they are rarely heard from again and vanish as quickly as the appeared.
Details may vary such as the location, amount required or circumstances causing the figure
to need help but the basic principle is the same, “Give me some money now and I will
give you more money later”.

This 419 style scam has been in use for some time now and still sees considerable use
and moderate success, with amount stolen equally hundreds of millions of dollars per year
[9] and people going as far as to commit suicide once falling victim to the scam [4]. This
displays how serious a problem this scam is to the modern individual and is the main
moral motivation behind my project.

A more concrete example of a 419 scam solicitation email may be seen here ??.

1.2 Scam-Baiting and 419Eaters

The 419 scam has become so well known that an online community has formed around
the idea of engaging with the 419 scammers so as to waist the scammer’s time. This, they
reason, will reduce the likelihood of the same scammer successfully scamming a genuine
victim, and as such, these scam-baiters are doing good work.

‘419Eaters’ [1] is one of the larger scam-baiting forums on the internet. The members
of this community have taken to documenting their conversations with scammers as they
pretend to be failing victim to the scammer’s tricks. This has caused there to be created,
a relatively large database of currently 658 scam-baiting conversations, that their forums
curate and provide available for further use and study. This database will be the main
resource used in my project to analyze language use and train models to identify scam
conversations. An example of a scam-baiting conversation from the 419Eaters forum may
be seen in Figure 3.1.

The 419Eaters database (419DB) isn’t perfect however. I plan to return to this point
in my critical evaluation however its worth noting at this stage that a conversation taken
from the 419 Eaters database will not 100% match a conversation between a scammer and
a genuine victim. This is in part because a scam-baiter is aware of the real situation they
are communicating in whereas a genuine victim would not be, however the scam-baiters
make a concerned effort to appear as genuine victims for as long as possible to better their
goal of wasting scammer’s time, and as such conversations from the 419Eaters database
can be considered a strong facsimile.

1.3 Current Scam Defense Measures

The next question to address is: ‘Why are models trained using this 419Eaters Database
necessary?”.

Current email spam filters can implement many different methods to protect an in-
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dividual. These include challenging an email origin to respond to a query and analysing
and data-mining many sections of the email including the header and other meta data
[7].

These methods do however contain a shortfall. These methods work on the idea that
blocking the initial solicitation email from a scammer is sufficient to protect their client.
This idea, however only provides two outcomes:

1. The solicitation email is intercepted and never shown to the client.

2. The solicitation email is not caught by the email filter and the client is now left
to their own devices and free to engage the scammer and potentially fall for there
scam.

My project proposes a third outcome: one where the initial solicitation email slips past
the email provider’s spam filter, but a second alarm is tripped as the conversation between
scammer and victim continues because now the email provider and their filtering software
can recognize not just initial scam emails, but the scam conversations themselves. This
outcome heavily motivates the work done in this project and may be seen as the driving
force behind most decision making where goals are concerned. I want to show a proof
of concept and the methodology with which an email provider may better protect their
customers from 419 scams.

1.4 Previous Work

Previous work exists studying the 419 scam. Some work provides and insider’s perspective
[8], some provides a detailed analysis on the scam as it appears on an individual platform
such as Cragslist [17] and some looks at how the 419 scammers organise [14].

A paper has previously been published using the 419DB to train distinguishing ma-
chine learning models [11], however its effectiveness was limited by the then relatively
small size of the 419DB. Previously the database had contained 57 conversations whereas
now it contains 658 messages. This I hope will increase the effectiveness of the models I
am intending to train.

1.5 Intended Audience

As mentioned previously my project aims to show that models trained on the 419DB
can be effective at distinguishing between 419 scam and non-scam conversations. This
methodology may then be used by email providers or email spam filter creators to better
train their filters and better protect their clients.

Further, my project intends to train models that may be used to distinguish between
scammers and scam-baiters on a message-by-message basis within the 419DB. Similarly
trained models should aid in the future labeling of scam-baiting conversations, allowing
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CHAPTER 1. CONTEXTUAL BACKGROUND

larger datasets to be used to provide better results for future work. The 419Eaters dataset
is advantageous because it helpfully labels who in the conversation is the scammer and
who is the scam-baiter. If scam conversations not from the 419Eaters dataset may be
easily labeled, then they too could be used in future work to increase the size of available
training data beyond the 10x increase in dataset size seen between [11] and the current
size of the dataset as mentioned in 1.5.

Finally my project should expand the understanding of academics seeking to under-
stand the 419 scam in the modern day. I intend to use Latent Dirichlet Allocation (LDA)
to identify topics in the language used by both the scammers and the scam-baiters as
observed from 419DB. These topics will then be graphed in regards to time, to see how
the language used by both parties changes over the course of the conversations. This
should hopefully inform future work that wishes to understand how either the scammer
or scam-baiter uses language to achieve their goals.

1.6 My Approach

In conclusion my aims for this project are as follows. I will:

• Train machine learning (ML) models for distinguishing between 419 scam and non-
scam conversations.

• Train ML models for distinguishing between scammer and scam-baiter messages
within the 419Eater conversations.

• Train LDA models for topic extraction from the course of the 419Eater conversations

• Analyze how use of language changes over time in the 419Eaters conversations

4



Chapter 2

Technical Background

2.1 Machine Learning

My project will train ML models at various points throughout its execution, and therefore
some explanation on machine learning is needed. Machine learning is a field of computer
science that studies a particular style of algorithms. These algorithms are able to make
decisions. Supervised models do this after being trained on a problem with training data.
Models used in this project will be both supervised and unsupervised and for the purposes
of both classification and topic clustering.

2.1.1 Supervised Models

Supervised machine learning models work by taking training data as input. The impor-
tance of this training data is that it provides the model with sample inputs and crucially
the data is ‘labeled’. Labeled data is data that also notes what output the model should
produce when provided the original data as input. Put more concretely, and in the con-
text of emails and email spam filters, a piece of labeled data may be the content on an
email and a data point declaring whether this email is spam or non-spam. This labeled
training data allows the model to tune internal parameters that mean when the model is
tested, by being given unlabeled data as input, it is able to make an accurate prediction
as to the correct output.

2.1.2 Classification

Classification is a common task asked of supervised learning models. Classification asks
the model to decide what group the input data belongs to, based on the information it
has derived from the training data. An example may be: a model that has been trained
to distinguish between two types of fish, Tuna and Salmon. As input this model is given
the length, width, color and weight of many individual fish measured in the wild and
when given this information in a testing environment, the model is expected to be able
to return, as output, the species of the fish, be that Tuna or Salmon.
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In more complex models more that 2 groups may be provided as sample outputs. For
example a model may be able to determine which of 10 species of fish the input belongs
to, or perhaps even 100. However in the case of this project, the supervised classification
models trained will need only distinguish between scam and non-scam or scammer and
scam-baiter, so models that best classify data into 2 groups are acceptable.

2.1.3 Unsupervised Models

Unsupervised ML models in contrast to 2.1.1, are models that find patterns and structure
within input data without being provided labels denoting the correct outputs for the data.
These models are typically used when less concrete answers and decisions are required
from the model and instead these models tend to excel at finding compact and imaginative
representations of the input data and the relationships they share.

2.1.4 Topic Modeling

Topic Modeling (or topic clustering) is a task that may be undertaken by ML models.
Topic clustering is when a model analyses input data and identifies topics within the
documents. In the case of textual data these topics may literally be topics in language
however the term topic can also be more generally understood to be any sensible feature
of data that allows it to be grouped. Textual topic models locate topics by finding links
and similarities between the words in a corpus, grouping these words into topics. These
topics may then be viewed by a human and labeled (as will be the case in this project).
In the context of natural language processing a document is a collection of words, and a
corpus is a collection of documents.

Latent Dirichlet Allocation (LDA) is the statistical model being using to cluster topics.
It works by first imagining the process through which a document in the corpus was
created, and using this process to reverse engineer and discover topics in the document.

It imagines the document is created by first sampling a topic from available topics and
then from this topic a word is sampled and placed in the document. Now it imagines that
the entire document was created this way and sees what topics it has created to allow
this document to form. This process is done in such way as to produce soft clustering,
that being that a word may appear as a member of more than one topic.

The topics found in the corpus may then be printed, along with the words that con-
stitute them and to what degree does each word influence/define that topic (called a
weight).

2.2 This Project’s Chosen Models

Now it is understood what models are expected to do and how we may group and define
them by tasks they perform and under what circumstances, it makes sense to explain
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2.2. THIS PROJECT’S CHOSEN MODELS

what concrete implementations will be used and how these work in more detail. The only
model not explained below is the LDA model as is explained above in 2.1.4

2.2.1 Näıve Bayes Classifiers

Näıve Bayes Classifiers are models that perform the task of classification by utilizing
Bayes’ Theorem. Bayes’ Theorem [15] is a mathematical formula used to calculate con-
ditional probabilities, summarized below:

For two events, A and B, if the probability that B occurs given A is know, as
is the probability of A occurring and the probability of B occurring then the
probability of A occurring given B may be calculated.

P (A|B) = P (A)
P (B|A)

P (B)
(2.1)

Näıve Bayes classifiers expand upon Bayes’ theorem by making certain assumptions
about the data they receive as input. These assumptions are: [12]

• That all features are independent

• That all features make an equal contribution to the outcome

In most contexts these assumptions are not 100% true however they still work well enough
in practice that this is overlooked, hence the name näıve. This näıve assumption of
independence allows Equation 2.1 to be expanded with the use of the following:

P (X, Y ) = P (X)P (Y ) (2.2)

And these two equations combine to create:

P (y|x1, ..., xn) =
P (x1|y)P (x2|y)...P (xn|y)P (y)

P (x1)P (x2)...P (xn)
(2.3)

Equation 2.3 means that if a piece of data, for example, a text document, may be
expressed as a set of features x1 to xn, then probabilities may be calculated expressing
how likely a new document is to belong to the specified class based on the probability that
those features individually would appear in a said class. These individual probabilities
may be calculated via observing training data and as such the model may begin to classify
testing data accordingly.
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CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.1: An example plotted sigmoid curve with corresponding data points

2.2.2 Logistic Regression

Logistic Regression ML models are a style of model used uniquely for binary classification.
That means, unlike the Näıve Bayes model explained above a Logisitc Regression classifier,
may only distinguish between 2 classes, this however is perfectly adequate for use in this
project.

Logistic Regression models work by using the training data provided to the model to
fit a sigmoid function to the data. The generic sigmoid function may be defined as follows:

sigmoid(x) =
1

1 + e−x
(2.4)

Equation 2.4 provides Logistic Regression (LR) with a nice advantage in that all
outputs of the sigmoid function will lie between 0 and 1, and this may immediately be
read as the probability of the input data point belonging to the positive class, allowing a
result of >0.5 to be classified as belonging to class 1, and <0.5 as belonging to class 0.

Most LR models will now use maximum likelihood to train the parameters of the
sigmoid function to best fit the training data. Maximum likelihood works by calculating
the likelihood that the observed data was produced from the current function with its
current parameters. It is then able to search all available versions of the function resulting
from all available set of parameters and find the function with the maximum likelihood
(hence the name).

In the case of LR, this allows θ and b to be calculated for:

x = θ · features+ b (2.5)

This allows us to plot our data points resulting in classification as observed in Figure
2.1 [19]:

Please note the data seen in Figure 2.1 is only one dimensional, for larger dimensional
data (ie data corresponding to multiple features) both θ and features seen in 2.5 must
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2.3. METHODS OF FEATURE EXTRACTION

be converted to arrays of values.

2.2.3 Support Vector Machines

Support Vector Machines (SVM’s) [13] are the last type of model that will be trained for
distinguishing between the origin of texts in this project. Support Vector Machines work
by attempting to calculate soft margins between data. These margins are what would
normally be called decision boundaries. The side of a decision boundary that data can
be determined to reside upon, determines the resulting classification. An optimal margin
would normally be calculated by attempting to find a plane that has maximum distance
between the edges of the two classes, (ie its equally far away from each class). This
however creates a problem in that this margin would be incredibly sensitive to ouliers.

What makes these margins ‘soft’ is the fact that they allow misclassification. This
means that the margin calculated by the SVM allows small proportions of the data to fall
on the incorrect side of the margin. This margin is tuned via cross validation (CV) and
CV will be explained further in Section 2.4.1.

Another key feature of an SVM is its use of kernels to artificially increase the di-
mensionality of the input data so as to find a more optimal margin or classifier. These
kernels allow the SVM to simulate providing more dimensions to the data to find a more
accurate classifier. Kernel choice is therefore important when training an SVM, however
fortunately for this project, when preforming text classification a linear kernel is accept-
able, as it best handles data with an already high dimensionality, as is the case in text
classification.

2.3 Methods Of Feature Extraction

Feature Extraction describes the method by which an algorithm selects features to be
provided as input for a machine learning algorithm. For example, when attempting to
train a model to distinguish between negative and positive reviews on a website, the input
intended to be provided to the model is the reviews (ie a collection of text). ML models
require inputs to be numerical in nature because as seen throughout Section 2.2, their
decision boundaries and classifiers and internal logic are determined by mathematical
models.

In order to transform textual data (or any data) into model readable numerical format
feature extraction must be performed. Feature extraction is therefore a very important
steps as it entirely determines how a ML model will be presented data. For textual data
(as is the type of data in this project) there are a variety of well documented feature
extraction methods. In this project three such methods shall be used:

9
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I ran on the beach Sunday
1 1 2 1 1 1

Table 2.1: Table displaying BOW feature extraction on the sentence, ”I ran on the beach
on Sunday”

2.3.1 Bag of Words

Bag of Words (BOW) is a feature extraction method that takes textual input and for each
unique word in the original text (referred to from here on as corpus) computes a count of
how many times that word appears in the corpus. For example, the sentence “I ran on
the beach on Sunday” may be represented by Table 2.1

Notice how beneath each word is the number referring to how many times the word
appears in the corpus. Before this table is supplied as input to a ML model, the words
may also be removed, simply replacing them by their index, as to the model it does not
matter what the word is, only that it is a feature we wish to quantify. As long as all
occurrences of the word when fed into the model are accompanied by the same index, the
model will be able to perform its job of classification accurately.

Bag of words is not however a perfect system, a point motivating the next method
used.

2.3.2 Frequency Cut-Off

Frequency Cut-Off (FCO) is a method of feature extraction that is similar to BOW in how
it collects features, with each word in the corpus being provided its own count, however
with FCO an extra step is implemented. This extra step is: each word must appear a
minimum number of times or in a minimum percentage of all documents on which the
feature extraction is performed.

This extra step means there are some trade-offs between FCO and BOW. FCO allows
the ignoring of rarely used or perhaps misspelled words from being considered by the
model. This often will improve the models performance, as it is now only trained with
impactful features. This is because any word in the corpus appearing an extremely low
amount of times is normally not very important or key in decision making (ie names of
places or people, misspelled words). These words can also be referred to as noise, as they
add unnecessary extra detail for the model to consider.

FCO however may also produce negative results compared to BOW. In the situation
where a series of seldom used words where to help with decision making (ie the words
‘not-scam’ may only appear in a very small number of documents because what scammer
would like to bring the idea of a scam to someone they are scamming, but may be a strong
indicator that indeed the email where a scam). In this situation FCO removes useful
information from the corpus and therefore both BOW and FCO will be implemented in
this project and there results compared.
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2.3.3 Word Embeddings (word2vec)

Word Embeddings are the final feature extraction method that will be explored in project.
Embeddings (in the context of text classification and word2vec) convert a word into a
vector representing the word’s semantic meaning. These embeddings are quite interesting
in how effectively they can identify the semantics of a word. For example, some word
embedding schemes create results where King – man = queen. This means embedding of
king, minus the embedding of man, using elementwise subtraction, equals the embedding
of queen.

Word2vec [2] is the embedding scheme chosen for my project. This is because it is
widely used and has many pre-trained embedding schemes already created for it and
published open-source on the internet. Word2Vec works by training a model. This model
is tasked with predicting a word from its context (the words surrounding it). As it
repeats this task the model internally creates and tunes a series of parameters (weights)
as it attempts to get better at its job of predicting. Once the model is fully trained the
model itself is discarded and the weights now form the basis of the embedding.

2.4 Model Evaluation

2.4.1 Cross Validation

Cross validation (CV) is a widely used method across ML to more accurately evaluate
how well a model does at performing its chosen task on unseen data. In the case of text
classification CV allows more accurate scoring metrics to be calculated for the performance
of the models at classifying the texts. When normally evaluating the performance of a
classification model, the programmer implementing the tuning and testing of the model
must determine what data should be used to train the model and what data should be
used to test the model and ascertain its effectiveness.

This method is flawed because depending on the way the data is split, the model may
run into some problems. For example, if the data is split so all the training data is from
class X and all the testing data is class Y, the model wont have been able to effectively
learn the differences between the two sets and therefore wont be able to classify effectively.
Similarly, if the training set it too small and the testing set is too large, the model will
have seen insufficient data to be well trained. Finally, if the training data is heavily
biased towards a certain class, the model may tune itself in such a way as to heavily
favor identifying unseen data as that class, and if the unseen data is of fact heavily biased
towards a different class the model will perform poorly.

Cross Validation works by taking the human error out of the train and test set splitting
process. It does this by splitting the data into k equally sized folds, where k is determined
by the user. Each fold is then used once as the testing data whilst the other k-1 folds
are used as training data. This process is repeated until each fold has had its turn at
being the testing data, the individual metrics the model achieved at each fold may now
be averaged or returned separately for analysis.
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This method succeeds because it allows a non-biased shuffling of data, and all data may
act as testing data so the resulting averages may be trusted to be a better representation
of how the model may perform on truly unseen data in the future.

2.4.2 Scoring Metrics

The last topic to be discussed surrounding the technical background of this project is the
scoring metrics that will be used to evaluate the classification models trained, they shall
be as follows:

2.4.3 Accuracy

Accuracy is perhaps the simplest metric. Its calculated as the number of correct predic-
tions, divided by the total number of predictions.

Accuracy =
CorrectPredictions

TotalPredictionsMade
(2.6)

This metric is simple and therefore also flawed. As mention as a motivating factor for
implementing CV in Section 2.4.1, if a large proportion of the testing data belongs to one
class, and the model exclusively classifies data as belonging to this one class, accuracy
would still return a high performance and the incorrect classifications would be of too
small a size effect the score.

2.4.4 Recall

Recall is calculated as the number of correctly identified positive data points (ie, 1s that
should be 1s), divided by correct positives + false negatives (ie 0s that should be 1s).

Recall =
TruePositive

TruePositive+ FalseNegative
(2.7)

This metric quantifies how well the model identifies positives in a dataset. This can be
a useful metric to maximise therefore, however, over tuning recall may impact precision,
seen in the case where if all data were classified as 1s (positive), the metric would return
100%, when this would obviously not be an ideal behaviour.

2.4.5 Precision

Precision is calculated as the number of positives classified as positives, divided by the
number of positive classified as positives plus the number of negatives classified as positives
(is that should be 0s).

12
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Recall =
TruePositive

TruePositive+ FalsePositive
(2.8)

While recall scores how well the model performed at finding all the positive values
within the dataset, precision scores how many of the positive data points the model
found, were correct.

2.4.6 F1-Score

F1-Score is seen as a middle ground between precision and recall. Its calculated as:

F1− Score =
2 ∗ Precision ∗Recall
Precision+Recall

(2.9)
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Chapter 3

Project Execution

3.1 Goals

As seen in Section 1.6 the goals of this project are as follows:

• Train machine learning (ML) models for distinguishing between 419 scam and non-
scam conversations.

• Train ML models for distinguishing between scammer and scam-baiter messages
within the 419Eater conversations.

• Train LDA models for topic extraction from the course of the 419Eater conversations

• Analyze how use of language changes over time in the 419Eaters conversations

3.2 Data

I will be using two databases in order to achieve my project goals. These are the 419Eaters
database (419DB) and the Enron Email Corpus (EEC).

3.2.1 The 419Eaters Database

The 419Eaters Database has previously been mentioned in Section 1 however now it must
be brought up and analysed in a new context, one where it will help achieve this project’s
goals.

The 419Eaters database (419DB) is a collection of email conversations that have oc-
curred between scammers and scam-baiters. These conversations exist online as a down-
loadable archive where each file represents one conversation. These files are of the JSON
format, which allows for easy manipulation inside Python, my chosen programming lan-
guage.
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Figure 3.1: An example of an email existing in the 419DB

Figure 3.2: The internal structure of JSON files in the 419DB

An example of a conversation may be seen in Image 3.1 and an example of the structure
of the JSON file may be seen in 3.2. Please notice the many fields that exist within the
file, such as ‘title’, ‘location’, ‘scammer’ etc. Many of these fields will be removed in the
data pre-processing steps as they do not aid in achieving this project’s objectives.

The 419DB will be used to train models that require access to scam conversations, to
both distinguish between them and normal conversations, and for the purpose of distin-
guishing between scammer and scam-baiter.

3.2.2 The Enron Email Corpus

The Enron Corpus is a collection of over 600,000 emails generated by over 100 employees
of the Enron Coorporation and was generated in its current format by the Federal Energy
Regulatory Commission (FERC) when they conducted a corruption investigation into the
Enron Corporation shortly before its termination in 2001. The Enron Corpus was later
released to the public and is today regarded as one of the best sources of real emails [5] as
it is not bound by any legal or privacy restrictions and is therefore freely used in research.
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Figure 3.3: An example email from the Enron Email Corpus

Figure 3.4: The Directory/File Structure of the EEC

An example email from the Enron Email Corpus (EEC) may be seen in Figure 3.3
and to better understand some of the re-structuring performed on the EEC during this
project; the file structure of the EEC downloaded for use in this project may be seen in
Figure 3.4

3.3 Design

The overview of the design of this project may be seen in Figure 3.5. This diagram breaks
down the steps required to achieve this project aims into a step by step series of processes
and stages, that will be discussed individually and in more detail as this section continues.
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Figure 3.5: A Flowchart detailing the design of this project
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Figure 3.6: The proposed file structure of the 419DB post ’Trim 419DB’ step

3.3.1 Data Pre-Processing

The data pre-processing step may be seen as how 2 individual databases are made ready
for use by the ML models used in this project. I can also be viewed in steps being applied
to each database:

• Manipulating the database, removing unnecessary information.

• Processing and tokenizing the text of the database.

Manipulating The 419DB

As seen in Figure 3.2, the 419DB contains some information not relevant to this project.
There are many fields that make up parts of the JSON object that is these files that
are unnecessary for the projects intended tasks. The fields required for this project are
’messages’ − > ’body’ and ’author-role’.

To remove the remaining unwanted fields I intend to load the files from the 419DB
before stripping away the unnecessary fields from the JSON files and re-saving the files
in a new directory for prosperity. This step is also referred to in parts of this project as
’Trimming’ and can be seen written as such in Figure 3.5. After this process is complete
the file structure of the 419DB should resemble that seen in Figure 3.6.

Manipulating the Enron Corpus

For ease of use I intend for the EEC to be formatted into a similar shape and style as the
419DB, this will allow the functions that handle the text processing steps of my design to
be implemented more easily, as they need only handle one style of input. This will involve
scanning through the EEC (currently storing each email from an individual’s inbox as a
single file, and each inbox as its own directory) and collecting together all emails that
share a similar ’subject’. This step is referred to in Figure 3.5 as ’Group Enron via
Subject’.

The next step is to convert ’Grouped Enron’ into ’Enron Conversations’. This will
involve a complete scan of ’Grouped Enron’. The purpose of this scan will be to sort all
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Figure 3.7: The proposed file structure of ’Enron Conversations’

emails ’subject’ line and place these emails and their contents in date order in a single
JSON file, creating ’Enron Conversations’. These files will now resemble the 419DB files
as both will now be a sequence of messages in time sequential order that in total form a
conversation. The new files should have a similar structure as seen in Figure 3.7.

Tokenizing Both Datasets

With both the 419DB and EEC now in similar, simple to understand formats, the next
step will be to pross their textual content so they will be ready for feature extraction.
Tokenization is the system by which a text document is converted into a list of words. As
this conversion is taking place I intend to also perform standard pre-processing steps to
make the data ready for feature extraction. These steps include:

1. Removing excess white-space and non-alphanumerical symbols from the texts

2. Removing all references to Enron from the Enron Corpus

3. Making all text lowercase

4. Replacing sequences of the letter X (used to denote omitted information) with a
unique token indicating omission

5. Replacing all numbers with a token indicating a number was present

6. Performing tokenization to convert from string to list of tokens

7. Removing stop words from the tokens

8. Apply Porter’s Stemmer algorithm to the tokens

In the above sequence of steps some points may require further explanation. Numbers
and sequences of Xs are provided with new tokens as in the context of Natural Language
Processing (NLP) they have only one semantic meaning. Xs mean omitted information,
regardless of length, and numbers mean a number was present, regardless of what the
number actually was. These steps allow a more concise set of tokens to be produced at
this stage.

20



3.3. DESIGN

Note that in many NLP contexts, when performing tokenization and the data pre-
processing steps that surround it, many individual will correct misspelling of words. This
works as above to create a more concise set of tokens and allows the semantic meaning
of the documents to be clearer, however, in the case of this project misspellings have
been allowed and kept within the tokens as it is believed that such misspelling may help
better identify the correct class to which the data should belong. For example, due to
human error, a scammer may be more likely to misspell certain words rarely misspelled in
legitimate official documents. This misspelling could therefore better identify a scammer
and scam conversations, so misspelling have been allowed to remain.

The final stage of pre-processing noted in the above steps makes use of the Porter’s
Stemmer algorithm [21]. Stemming algorithms are algorithms that transform to better
capture their semantic meaning. For example the words run and running are semantically
similar yet in a pure string representation vary by some amount. Porter’s Stemmer algo-
rithm removes morphological and inflectional endings from words in the English language
and is used commonly in NLP, and will be used here for the same reasons.

3.3.2 Forming The Corpus’

The next step in creating the models required to achieve this project’s goals is to use the
data resulting from Section 3.3.1 to train ML models. However before this step may be
completed the data must be ’labeled’ or ’tagged’. This involves collecting the data from
the pre-processig steps and supplying data to note its correct classification. Two different
tasks are to be completed by classification ML models trained in this project, they are:

1. To distinguish between scammers and scam-baiters within the 419DB data

2. To distinguish between scam and non-scam conversations

Each task will require different data and a different labeling scheme. For the first
task, messages will be taken from the 419DB and provided the label of 0 if the authorrole
of the message is scam-baiter, 1 if the authorrole is scammer. In this resulting corpus
each document shall represent a single message. The ratio of scammer to scam-baiter
messages in the 419DB is very close to 1:1, and the total number of messages forming the
new corpus equals 37488.

For the second task both the 419DB data and EEC data shall be required. For this
new corpus entire conversations shall be extracted from both databases. A conversation
shall be provided the label of 0 if it is from a non-scam conversation (ie the EEC) and
1 if it is a conversation involving a scammer (ie from the 419DB). The ration of scam to
non-scam conversations in this new corpus shall be roughly 10:175 to mirror the ratio used
in [11]. To form this corpus, the entirety of the 419DB shall be used (658 conversations)
and therefore 11540 conversations shall be sampled from the EEC. This means the newly
created corpus shall contain 12,198 conversations.

These two newly created labeled corpus’ shall from this point on be referred to as the
’Scam Baiter Vs Scammer Corpus’ and the ’Scam Vs Non-Scam Corpus’.
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0 1 2 ... n words
4 7 2 ...
3 2 6 ...
...

...
...

n docs

Table 3.1: Sample Array of size (n docs x n words)

3.3.3 Feature Extraction

At this stage both corpus’s are ready for feature extraction using the three methods
mentioned in Section 2.3. These being Bag of Words (BOW), Frequency Cut-Off (FCO)
and word2vec (W2V). The sample outputs of the feature extraction methods methods
may be seen in Figure 3.1.

Please note for BOW, n words shall equal the number of unique words found. For
FCO, n words should equal a lower number than for BOW, this number is determined
by how many words meet the cut-off frequency. Finally, for w2V, n words is equal to
the dimensionality of the w2v model used. Common number are 50, 200 and 300. In all
cases, n docs is the number of documents being used to train the models, either 12,198
or 37,488 as per 3.3.2.

3.3.4 Training the Models

At this stage the models may be provided with their data and begin training. All to-
gether this will produce 18 models trained for the purpose of text classification: 9 for
distinguishing between scam and non scam conversations (3 feature extraction methods
* 3 models), and 9 for distinguishing between scammer and scam-baiters within scam
conversations (again 3 FE methods * 3 models).

Parameters influencing the success of the models will be tuned as the models are
iteratively tested. This is documented in 3.4.1 and 3.4.2.

Results should then be produced from each model after performing 10-fold cross-
validation. This cross-validation will help create a more balanced and bias free set of
evaluation parameters. The Python module scikit-learn (SKLearn) has many robust and
well tested model implementations and these shall be the basis of the models’ implemen-
tation.

Topic Clustering and Language Analysis

So far the only models mentioned in much of this projects design documentation has been
regarding the models that shall be trained for the purpose of text classification. This
project does however intend to use one more type of ML model to achieve its aims. LDA
models will be used to perform topic extraction on the scam conversations found in the
419DB. This model does not require labeled data to perform its task as its goal is to find
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topics within an unlabeled collection of data. This unsupervised model shall therefore
take as input the 419DB from directly after the data pre-processing stage seen in Section
3.3.1 and directly before the data is transformed into the corpus’ seen in Section 3.3.2.

The 419DB shall be split into three variants, each variant being supplied to an instance
of an LDA model:

• Variant A: The the entirety of the 419DB

• Varient B: Only the messages from scam-baiters

• Varient C: Only the messages from scammers

These three different document corpus’ will each train different instances of an LDA
model until each model provides a human understandable set of topics extracted from its
corpus. These topics for example may be:

• Intimidating Language

• Formal Language

• Language implying urgency

• Language about finance

Each corpus variant will then be binned into deciles (10 sections), where each section
contains the corresponding messages from every conversation in the variant. For example,
if a conversation is 20 messages long, the first two messages will be placed in decile 0, the
second two in delice 1 etc.

With each variant split and organized into deciles, the deciles may now used to query
their respective LDA models. There respective LDA model will then provide as output
a vector describing how much the topics that the model had identified appear in the
documents provided from the deciles

This will allow a visual representation of how the use of the various topics the LDA
models are able to extract changes of the course of scam conversations, allowing the
language analysis required by this projects aims and objectives.

3.4 Implementation

To enable easier replication of this project’s work, summaries of each step on the project
design steps and how they were achieved in practice shall now be detailed. Note once
again that the chosen language with which to implement was Python version 2.7. Any
areas that deviated from the originally suggested design will be noted and the reasoning
behind the deviation explained.
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3.4.1 Data Pre-Processing

Manipulating the 419DB

As mentioned in the design section, the 419DB was stripped of unnecessary fields using
a ¡dict¿ class to store an internal representation of the JSON files during runtime.

Manipulating the Enron Corpus

As per the design documentation the Enron corpus was first re-structured so that indi-
vidual emails existed in folders corresponding to the subject field of the email. A scan
was then performed over this newly formed copy of the corpus and email threads were
subsequently formed into a single JSON file using a custom class for this conversion.

These two individual scans proved to be very necessary due to the large nature of the
EEC. The grouping by subject was done by placing each email in a folder corresponding
to the initials of the subject. For example, emails with the subjects ”I am Groot” and
”I am Green” would appear in the same folder upon which the second scan would be
performed. This was done as folder names have a limited length and naming rules so a
direct copy of the subject couldn’t be used.

Special care was also taken to ensure suffixes such as Re, Fwd and Fw were removed
from the subject when they are moved and or compared. Originally only Re was accounted
for, causing a fix to be implemented at a later date.

Tokenizing Both Datasets

Both datasets were then tokenized, ensuring all tasks mentioned in 3.3.1 where performed.
Originally for the 419DB an older implementation of Porter’ Stemmer algorithm was
implemented, this added lots of excess file handling steps to the process. When the process
was repeated for the EEC, a Python module was found to exist, allowing the algorithm to
be applied in the same instance as the rest of the tokenization and pre-processing steps.

Forming the Corpus’

Both corpus’ were formed, being held during runtime in the ’Bunch’ data structure pro-
vided by the sklearn module. Here however a change had to be amde from the original
design. The Enron corpus was found to be too large to store effectively in memory prior
to feature extraction and as such the corpus upon which feature extraction would be per-
formed was formed incrementally, each increment then being saved to permanent memory
and removed from allocated runtime memory. This was necessary as the corpus to which
the Enron Corpus was added contained roughly 12,000 conversations of on average 10
messages each and at times this proved to be too much for a 32-bit run time environment
with running with 8GB of RAM to handle, causing crashes and errors in processing.
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Performing Feature Extraction

Performing feature extraction on the 419DB was simple however due to the edited imple-
mentation for storing the Enron Corpus a new function was designed that incrementally
read from disk sections of the Enron Corpus. Feature Extraction was then immediately
performed on the whole Enron Corpus and the corpus was immediately removed from run
time memory once feature extraction was complete.

This implementation does still need the entirety of the Enron Corpus to be loaded
into memory, however it was now done so in a more ergonomic manner due to the later
stage of processing and for a much shorter period of time. This was sufficient to allow
feature extraction to occur and for the task to progress. Once feature extraction had
been performed the pyhsical memory footprint of the data was massively reduced as
representation of the data changed from arrays of string and integers, to concise arrays
of just integers. These arrays were more concise due to the counting/embedding methods
used reducing the dimensionality of the data.

Training the Models

The models trained mostly without incident. There are however two things to note. The
first is that the SVM models, even when using only a linear kernel to aid efficiency, took a
long time to tune parameters and fit to the training data, the second being that the W2V
embedding took a long time to embed the entirety of the two corpus’ it was provided and
as a result models requiring the W2V Embedding on the larger corpus (Scam Vs Non-
Scam) where unable to be collected as the feature extraction still hadn’t been successful
after 2 days of processing.

3.4.2 Evaluating the Models

Implementing 10 fold cross-validation did cause some of the models to perform irregularly.
For example, the original implementation of logistic regression took to crashing whilst
fitting whilst using cross-validation, however these issues were soon dealt with and results
produced by using a variety of cross-validation implementations, avoiding the situations
causing errors. The results will be discussed in a later Section 4.2

3.4.3 Topic Clustering and Language Analysis

Creating topic clustering’s using the LDA model proved an arduous task as often the
topic clustering provided as output provided little insight to the data, or the topics found
were near meaningless and a lot of the topics suggested proved difficult to name. This
will be discussed in more detail in Section 4.3.1.

Restructuring the 419DB into deciles required a significant amount of coding to create
a robust solution but the basic principles were simple in nature and therefore don’t bare
mentioning in detail. The graphs produced by the graphing of these topic densities over
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time however did produce some interesting results, explained further below in Section
4.3.1 also.
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Chapter 4

Critical Evaluation

4.1 Code Testing

The vast majority of testing conducted during the course of the completion of this project
was for the purpose of confirming data integrity. This is because the majority of functions
created transform large amounts of data, be that by reorganizing data into new structures,
altering data with word embeddings or appending ‘labeling data and so on.

In order to confirm data integrity at various stages of this project multiple testing
strategies were used. One such strategy was to confirm the shape and size of the handled
data at all points throughout the data’s use in the project. For example, after each
transformation of data is complete, the shape of the returned data is checked to ensure it
has been transformed as intended.

4.1.1 Data Shape Tests

Shape Testing was performed at multiple points during the transformation of data, the
outline and summarised results of these tests may be seen in Table 4.1

Note-worthy Tests

4 & 5: These functions did not have an intend output shape due to the fact that the
output was subjective on the input and how they were grouped, more shared subjects
would equal fewer resulting conversations, but the conversations themselves would be
longer.

6: Enron Tokenize also performed the task of sampling from the Enron Corpus for the
required number of email conversations, hence the drop in returned email conversations
from the whole corpus to this new number.

7: Scam Vs Non-Scam Corpus combined the email threads from Enron with the files
from 419DB, hence the shown mathematics.
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Test ID Transformation Shape before Intended shape after Observed shape
1 Trim 419DB 658 Files 658 Files 658 Files
2 Tokenize 419DB 658 Files 658 Files 658 Files
3 S Vs SB Corpus 37448 Docs 37448 Docs 37448 Docs
4 Enron Group 150 ppl, 517401 Files 517401 Files 517401 Files
5 Enron Convert 517401 Files NA 159282 Threads
6 Enron Tokenize 159282 Threads 11540 Threads 11540 Threads
7 S Vs NS Corpus 11540 + 658 Convs 12198 Docs 12198 Docs
8 BOW FE (S vs SB) 37448 Messages (37448x1000) Mat (37448x1000) Mat
9 BOW FE (S vs NS) 12198 Documents (12198x1000) Mat (12198x1000) Mat
10 FCO FE (S vs SB) 37448 Messages (37488xN) Mat (37488x148) Mat
11 FCO FE (S vs NS) 12198 Documents (12198xM) Mat (12198x392) Mat
12 W2V FE (S vs SB) 37448 Messages (37448x200) Mat (37448x200) Mat
13 W2V FE (S vs NS) 12198 Documents (12198x200) Mat (12198x200) Mat

Table 4.1: Table containing outline of shape tests: Plan and Results

Model Feature Extract Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Näıve Bayes BOW 69.2 73.6 69.4 67.8
Näıve Bayes FCO 63.7 67.0 64.0 62.1
Näıve Bayes W2V 69.5 70.1 69.4 69.2
Logistic Regr BOW 85.1 85.3 85.1 85.1
Logistic Regr FCO 77.7 78.4 77.8 77.6
Logistic Regr W2V 79.8 80.0 80.0 80.0

SVM BOW 81.3 83.7 78.0 83.7
SVM FCO 77.3 81.4 71.4 76.1
SVM W2V 78.5 78.1 80.0 80.0

Table 4.2: Results obtained from the Scammer Vs Scam-Baiter Corpus

8 & 9: For spatial efficiency the BOW FE method limited the number of stored counts
to the most numerous 1000, hence the shape.

10 & 11: FCO further reduced the size of the returned array by removed all words from
the corpus that don’t meet the cut of frequency of appearing in 20% of the documents.

12 & 13: The chosen W2V Embedding loaded and used in this project had a complexity
of dimensionality of 200, meaning it used 200 data points per word to store its embedding.

4.2 Classification Model Results

The results obtained from the models trained in this project to distinguish between scam-
mers and non-scammers inside the 419DB can be seen in Table 4.2

The results obtained for the similar models trained instead distinguish between scam
and non-scam email conversations may be seen in Table 4.3
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Model Feature Extract Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Näıve Bayes BOW 82.5 62.6 90.7 65.7
Näıve Bayes FCO 86.0 64.6 92.4 68.2
Näıve Bayes W2V NA NA NA NA
Logistic Regr BOW 99.8 98.6 99.3 98.1
Logistic Regr FCO 99.9 97.1 99.1 98.1
Logistic Regr W2V NA NA NA NA

SVM BOW 99.8 99.9 99.9 99.9
SVM FCO 99.7 99.9 99.9 99.9
SVM W2V NA NA NA NA

Table 4.3: Results obtained from the Scam Vs Non-Scam Corpus

4.2.1 Commentary and Evaluation

Scammer Vs Scam-Baiter Classification

Provided in Table 4.2 are the results for the models trained to distinguish between the
scammer and the scam-baiter inside the 419DB. For these models the best performing
model across all scoring metrics is the Logistic Regression model that used BOW for
feature extraction. In terms of expected results, 85.1% is a relatively low achievement,
especially with the volume of data involved as can be seen when the results are compared
to the results obtained in [11]. This could however indicate that the language used by the
scam-baiter has become more similar to the scam-baiter as the 419DB has expanded. This
could be the direct result of an effort to better engage and therefore better inconvenience
the scammer, or it could instead be a result of more informal language becoming more
commonplace in the modern online space.

This set of low results may also be caused by parts of the projects methodology.
Removing the maximum number of features from the generic BOW method and also
lowering the minimum frequency required for a word to be allowed by FCO could increase
the results seen. These changes should provide more information to the models and if
improvements can be made by increasing the amount of data seen, this should trigger this
improvement.

A reason perhaps why the models using W2V extraction scored poorly could be that
the dimensionality of the pre-trained embedding used was only 200. This pre-trained
embedding was trained on tweets from the social media platform twitter. This could also
explain the W2V using models poor performance as its not unlikely that the language
used in the 2 environments (twitter vs scam conversations) may be substantially different,
causing the embedding the W2V model used to be poor embeddings for the 419DB.

Scam Vs Non-Scam Classification

As mentioned in the Section 3.4.1 of the project implementation, creating the dataset
corresponding to W2V feature extraction performed on the scam Vs Non-Scam Corpus
proved too time consuming for results to be collected for this project. Upon further in-
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Figure 4.1: Graph of topic use from both authors over time

spection the algorithm was computing the required embeddings, so with a large amount of
time or perhaps some more powerful hardware, these models could be trained as intended.

The best results seen here were very strong at 99.9%, mostly achieved by the SVM
models. This could suggest that where the SVM excels (at creating soft margins) is
exactly what is needed for effective classification in this context. This could mean that
outliers are a common and otherwise damaging part of the combined Scam Vs Non-Scam
email corpuses.

This task and the classifiers it has trained can be seen as significantly more successful
than the classifiers trained in for the previous task. This could be in part to the larger
amount of data available when including the Enron Corpus, or perhaps the task is signif-
icantly easier for ML models to perform, with a greater distinguishing boundary between
the two classes than in the previous problem.

4.3 Language Analysis

4.3.1 Results

This results section shall provide analysis of the language used by scammer and scam-
baiters by analysing the results return from three LDA models. One model was trained
from each author, with the final model being trained from messages from the two authors
combined.
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Figure 4.2: Graph of topic use from Scam-Baiters over time

Figure 4.3: Graph of topic use from Scammers over time
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Language and Topic Use from both author types

In Figure 4.1 it can that perhaps contrary to popular belief, the use of pleasantries
throughout a scam conversation remains mostly constant, with only a small down tick
near the end of a conversation. This is perhaps explained by the fact that both the scam-
mer and scam-baiter are aiming to keep the other party engaged in the conversation for
a long as possible until it is clear that the scam will not succeed, when we then see the
use of pleasantries fall.

Note however that one may expect a sharper drop off where this case. We can also
determine from the above graph that certain words relating to finance as use extensively
in the beginning of conversation but then decrease in occurrence/use. This is perhaps
because once a payment method has been discussed it need no longer be a concern. Also
note that finance(2) here included more slightly more formal language such as ‘company’
and ‘document’ so again, perhaps once credibility had been stressed at the beginning of
a conversation, the conversation moved on to other topics.

Unfortunately, the topic marked ‘?’ in this instance was not a human interpretable
topic and included words such as ‘get’, ‘know’, ‘time’ and ‘like’. If I were pushed to make a
judgement I may call this topic “short filler words” and unfortunately this doesn’t inform
the viewer on any particular behavior.

Most other topics remain fairly constant in frequency of occurrence and therefore don’t
inform the viewer of much either.

Language and Topic Use from Scam-Baiters

Figure 4.2 displays use of language by the scam-baiter over time and does provide some
useful insight. For example, one topic identified by the topic clustering process was
“Faith/Religion”. Use of this topic appeared relatively consistently by the scam-baiter
throughout their conversations.

From context and study of the original conversations its understand that this is be-
cause scam-baiters are seen to proport their innocence and righteousness to the scammer
throughout their conversations, both to make the scammer feel guilty, and to assert their
naivety when they have to ask the scammer for more time to complete their requested
tasks, in an effort to make the delays they are reporting believable.

Similarly to the previous figure, it can be seen that use of financially connected terms
drops as the conversation progresses. I posit that if is for the same reason as discussed
previously, that conversation related to finances is established at the beginning of the
conversation and then allowed to drop in frequency as the conversation progresses.

Language and Topic Use from Scammers

In Figure 4.3 the most notable trends seen in topic frequency are seen in Pleasantries
and Official language. Perhaps counter intuitively the use of pleasantries increases as a
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proportion of language used by the scammer as the conversation progresses. The reasons
as to why this may be the case may be viewwed as a combination of factors. One is that
as the scam-baiters ruse progresses, the scammer, believing this scam is taking too long,
tries to increase the pressure applied to the scam-baiter by use more pleasant language
to increase social pressure. Another reason may be that, it is not uncommon that if a
scammer gets called out by the scam-baiter and it is revealed the scammer is being toyed
with, they will occasionally resort to pleading with the scam-baiter, claiming to be a poor
or desperate individual.

The other interesting change is the change in frequency of official language. This, I
believe, may be easily explained. In the beginning of a conversation, it is seen that the
scammer makes a great effort to appear formal and official, to win their targets trust,
however as the conversation progresses and the scammer must produce more organic and
original responses their trained aura of officiality drops and more natural language takes
its place.

Similarly to the previous two graphs we also observe in this data that the use of
financially connected terms steadily decreases as the conversation progresses.

4.3.2 Commentary and Evaluation

The topic clustering task performed by the LDA models trained in this project were of
mixed success. The LDA models were able to effectively cluster and extract topics from
within the provided texts, however the plotting of these topics over time did not reveal
many unique or new insights into the language used by the individuals involved. The lack
of interesting language changed over time is not a fault of the LDA model, as it is not
designed to distinguish topics based on how these topics change over time.

This means the fault perhaps lies with the choice of model used by this project and
assuming that any topics an LDA model was able to distinguish from a document would
in-fact have varying densities over time. Upon reflection it seems somewhat obvious that
a topic that remains consistently prominent through-out the series of messages that make
up a conversation would be more likely to be identified as a topic by LDA. LDA will better
identify a topic, if it can see this topic used all through the conversation. This means that
perhaps leaving this task to a fully unsupervised ML model may always encourage mixed
results. Then again, perhaps with a different model used for topic clustering, the need
for consistency may be eliminated and therefore topics with more interesting variations
found.

There also remains the question of the un-tagged topics that the LDA model identified,
but which I was unable to successfully provide a topic description. A greater understand-
ing as to the intricacies of language may have allowed a more accurate description.
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Chapter 5

Conclusion

5.1 Summarising of Project Goals

In conclusion, this project aimed to do 4 things:

• Train machine learning (ML) models for distinguishing between 419 scam and non-
scam conversations.

• Train ML models for distinguishing between scammer and scam-baiter messages
within the 419Eater conversations.

• Train LDA models for topic extraction from the course of the 419Eater conversations

• Analyze how use of language changes over time in the 419Eaters conversations

5.2 Evalution of Project Status

All of these proposed aims have been achieved albeit to varying levels of success. The
models used to distinguish between Scam and Non-Scam email conversations where able
to score as highly as 99.9% accuracy. This definitely confirms the motivating use case,
that these models be used to better protect email clients from scammers once the initial
solicitation email has already reached the client, as a real and achievable goal for industry
leaders to implement.

The models trained to distinguish between scammers and scam-baiters within the
4129DB met with limited success compared to the previous examples, achieving scores
from varying scoring metrics around the 85% mark at best. This is still a perfectly ac-
ceptable score, however more effective models may need to be created before the methods
and models displayed in this project for that tasks can become widespread.

The LDA models were able to perform topic clustering on the messages used by Scam-
mers and Scam-Baiters, both individually and combined. This process however took much
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trial and error and the resulting topics were not easy to label, nor were they particularly
detailed topics.

These topics were also not as informative as first hoped, especially once plotted over
time. A proposed reason for this may be the contradicting nature of how LDA models
determine topics, and the variations this project hoped to find in the usage of said topics
over time.

5.3 Open Problems and Possible Extensions

Results and analysis from Section 4.2 indicate that the method via which the models for
the purpose of distinguishing between Scammer and Scam-Baiter were trained and im-
plemented may be flawed. This motivates further study into the field of natural language
processing and training text classification models as these results can be improved upon.

Another area worthy of further exploration is the method by which this project iden-
tified topics within the 419DB. These topics were intended for use as markers that would
allow commentary on how the use of language changed over time in scam conversations.
In practice however, primarily due to the model used to perform topic clustering, the
results found provided less insight than was hoped. Experimentation with different mod-
els to perform this topic clustering could produce more interesting and comment-worthy
clusterings that better provided insight into how the use of language changed.

As mentioned previously in this Section 1.2, the 419DB has some flaws. These con-
versations are not 100% accurate scam conversations as they are not scam conversations
with genuine victims. This leads to they idea that more accurate data and therefore more
accurate models could be created if a database of genuine scam conversations could be
formed. These conversations however would be much harder to source and therefore this
task could take a large amount of time, perhaps too large to be worthwhile.

As an addition to the previous point, models could be trained using scam conversations
originating from different forms of scam. The work done in this project only demonstrates
the ability for ML models to identify scam conversations where the scam is the 419
(Advance Fee Fraud) scam. This scam is one of the most prevalent but it is not the only
existing scam. This projects methodology could be replicated with data originating from
different scams, to better train an all purpose scam filter.

Finally, one last possible extension of this work could be to demonstrate the models
trained in this project functioning as actual email filters. So far the proposed use case of
these models is a hypothetical. Further work that demonstrated these models and how
they could be practically implemented to function as email filters would make the proposed
use case of these models and insights being adopted by the cyber security industry, closer
to reality.
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